Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolic Targets for Treatment of Autoimmune Diseases.

Identifieur interne : 000088 ( Main/Exploration ); précédent : 000087; suivant : 000089

Metabolic Targets for Treatment of Autoimmune Diseases.

Auteurs : Paramarjan Piranavan [États-Unis] ; Manjeet Bhamra [États-Unis] ; Andras Perl [États-Unis]

Source :

RBID : pubmed:32341806

Abstract

There is a considerable unmet demand for safe and efficacious medications in the realm of autoimmune and inflammatory diseases. The fate of the immune cells is precisely governed by control of various metabolic processes such as mitochondrial oxidative phosphorylation, glycolysis, fatty acid synthesis, beta-oxidation, amino acid metabolism, and several others including the pentose phosphate pathway, which is a unique source of metabolites for cell proliferation and maintenance of a reducing environment. These pathways are tightly regulated by the cytokines, growth factors, availability of the nutrients and host-microbe interaction. Exploring the immunometabolic pathways that govern the fate of cells of the innate and adaptive immune system, during various stages of activation, proliferation, differentiation and effector response, is crucial for new development of new treatment targets. Identifying the pathway connections and key enzymes will help us to target the dysregulated inflammation in autoimmune diseases. The mechanistic target of rapamycin (mTOR) pathway is increasingly recognized as one of the key drivers of proinflammatory responses in autoimmune diseases. In this review, we provide an update on the current understanding of the metabolic signatures noted within different immune cells of many different autoimmune diseases with a focus on selecting pathways and specific metabolites as targets for treatment.

DOI: 10.20900/immunometab20200012
PubMed: 32341806
PubMed Central: PMC7184931


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolic Targets for Treatment of Autoimmune Diseases.</title>
<author>
<name sortKey="Piranavan, Paramarjan" sort="Piranavan, Paramarjan" uniqKey="Piranavan P" first="Paramarjan" last="Piranavan">Paramarjan Piranavan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bhamra, Manjeet" sort="Bhamra, Manjeet" uniqKey="Bhamra M" first="Manjeet" last="Bhamra">Manjeet Bhamra</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Perl, Andras" sort="Perl, Andras" uniqKey="Perl A" first="Andras" last="Perl">Andras Perl</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, College of Medicine, State University of New York, Syracuse, NY 13210</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York, Syracuse, NY 13210</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32341806</idno>
<idno type="pmid">32341806</idno>
<idno type="doi">10.20900/immunometab20200012</idno>
<idno type="pmc">PMC7184931</idno>
<idno type="wicri:Area/Main/Corpus">000085</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000085</idno>
<idno type="wicri:Area/Main/Curation">000085</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000085</idno>
<idno type="wicri:Area/Main/Exploration">000085</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolic Targets for Treatment of Autoimmune Diseases.</title>
<author>
<name sortKey="Piranavan, Paramarjan" sort="Piranavan, Paramarjan" uniqKey="Piranavan P" first="Paramarjan" last="Piranavan">Paramarjan Piranavan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bhamra, Manjeet" sort="Bhamra, Manjeet" uniqKey="Bhamra M" first="Manjeet" last="Bhamra">Manjeet Bhamra</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Perl, Andras" sort="Perl, Andras" uniqKey="Perl A" first="Andras" last="Perl">Andras Perl</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, College of Medicine, State University of New York, Syracuse, NY 13210</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York, Syracuse, NY 13210</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Immunometabolism</title>
<idno type="ISSN">2084-6835</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">There is a considerable unmet demand for safe and efficacious medications in the realm of autoimmune and inflammatory diseases. The fate of the immune cells is precisely governed by control of various metabolic processes such as mitochondrial oxidative phosphorylation, glycolysis, fatty acid synthesis, beta-oxidation, amino acid metabolism, and several others including the pentose phosphate pathway, which is a unique source of metabolites for cell proliferation and maintenance of a reducing environment. These pathways are tightly regulated by the cytokines, growth factors, availability of the nutrients and host-microbe interaction. Exploring the immunometabolic pathways that govern the fate of cells of the innate and adaptive immune system, during various stages of activation, proliferation, differentiation and effector response, is crucial for new development of new treatment targets. Identifying the pathway connections and key enzymes will help us to target the dysregulated inflammation in autoimmune diseases. The mechanistic target of rapamycin (mTOR) pathway is increasingly recognized as one of the key drivers of proinflammatory responses in autoimmune diseases. In this review, we provide an update on the current understanding of the metabolic signatures noted within different immune cells of many different autoimmune diseases with a focus on selecting pathways and specific metabolites as targets for treatment.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32341806</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">2084-6835</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Immunometabolism</Title>
<ISOAbbreviation>Immunometabolism</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolic Targets for Treatment of Autoimmune Diseases.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e200012</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.20900/immunometab20200012</ELocationID>
<Abstract>
<AbstractText>There is a considerable unmet demand for safe and efficacious medications in the realm of autoimmune and inflammatory diseases. The fate of the immune cells is precisely governed by control of various metabolic processes such as mitochondrial oxidative phosphorylation, glycolysis, fatty acid synthesis, beta-oxidation, amino acid metabolism, and several others including the pentose phosphate pathway, which is a unique source of metabolites for cell proliferation and maintenance of a reducing environment. These pathways are tightly regulated by the cytokines, growth factors, availability of the nutrients and host-microbe interaction. Exploring the immunometabolic pathways that govern the fate of cells of the innate and adaptive immune system, during various stages of activation, proliferation, differentiation and effector response, is crucial for new development of new treatment targets. Identifying the pathway connections and key enzymes will help us to target the dysregulated inflammation in autoimmune diseases. The mechanistic target of rapamycin (mTOR) pathway is increasingly recognized as one of the key drivers of proinflammatory responses in autoimmune diseases. In this review, we provide an update on the current understanding of the metabolic signatures noted within different immune cells of many different autoimmune diseases with a focus on selecting pathways and specific metabolites as targets for treatment.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Piranavan</LastName>
<ForeName>Paramarjan</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhamra</LastName>
<ForeName>Manjeet</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perl</LastName>
<ForeName>Andras</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, College of Medicine, State University of New York, Syracuse, NY 13210, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI072648</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI122176</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R34 AI141304</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R34 AR068052</GrantID>
<Acronym>AR</Acronym>
<Agency>NIAMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Immunometabolism</MedlineTA>
<NlmUniqueID>101607751</NlmUniqueID>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">acetylcysteine</Keyword>
<Keyword MajorTopicYN="N">glycolysis</Keyword>
<Keyword MajorTopicYN="N">immune metabolic pathways</Keyword>
<Keyword MajorTopicYN="N">kynurenine</Keyword>
<Keyword MajorTopicYN="N">mechanistic target of rapamycin</Keyword>
<Keyword MajorTopicYN="N">oxidative phosphorylation</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
<Keyword MajorTopicYN="N">pentose phosphate pathway</Keyword>
<Keyword MajorTopicYN="N">psoriasis</Keyword>
<Keyword MajorTopicYN="N">rheumatoid arthritis</Keyword>
<Keyword MajorTopicYN="N">scleroderma</Keyword>
<Keyword MajorTopicYN="N">systemic lupus erythematosus</Keyword>
<Keyword MajorTopicYN="N">tryptophan</Keyword>
</KeywordList>
<CoiStatement>CONFLICTS OF INTEREST The authors declare that they have no conflicts of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32341806</ArticleId>
<ArticleId IdType="doi">10.20900/immunometab20200012</ArticleId>
<ArticleId IdType="pmc">PMC7184931</ArticleId>
<ArticleId IdType="mid">NIHMS1580994</ArticleId>
</ArticleIdList>
<pmc-dir>nihms</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):E5699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26371324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lupus. 2010 Nov;19(13):1492-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20647250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2006 Sep;54(9):2983-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16947529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autoimmun Rev. 2019 Apr;18(4):334-348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30797943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scand J Rheumatol Suppl. 1986;61:253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3296153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2013 Sep 1;191(5):2236-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23913957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JCI Insight. 2018 Oct 18;3(20):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30333306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2014 Sep 02;5:420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25228902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rheumatology (Oxford). 2019 Feb 1;58(Suppl 1):i4-i16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30806710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2014 Jul 24;371(4):303-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25054716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Nephrol. 2014;40(6):507-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25531641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1993 Feb 15;212(1):95-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8444168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2013 Sep 23;210(10):2119-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2012 Sep;64(9):2937-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22549432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2007 Jan;148(1):241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17038556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Med. 2019 May 27;8(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31137815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Immunol. 2016;36(1):75-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27480903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2010 Aug;62(8):2476-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20506342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jul 21;11(7):e0159384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27441838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2019 Nov 30;42(11):747-754</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31766832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 1998 Jul;41(7):1241-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9663482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2017 May 16;46(5):703-713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28514672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Cell Biol. 2016 Nov;94(10):925-934</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27562063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mediators Inflamm. 2014;2014:973986</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25214721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scand J Immunol. 2018 Nov;88(5):e12713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30176060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2015 Feb 11;7(274):274ra18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25673763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2017 Dec;26(12):2367-2380</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28940468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 May 1;453(7191):65-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18362915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2018 Oct;77(10):1507-1515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29945921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheumatol. 2017 Dec;69(12):2259-2270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28841779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2019 Dec 26;134(26):2399-2413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31877217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2019 Jun;78(6):736-745</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30926722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2010 Nov;9(11):883-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21031003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2005 Nov 24;353(21):2219-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2011 Aug;63(8):2172-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21484771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2019 Aug 07;10:1697</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31440232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3909-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2018 Jul;39(7):562-576</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29739666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 Apr 6;293(14):5005-5015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29449374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Feb 7;49(3):379-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23395268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2017 May;174(9):893-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28239846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2018 Mar 24;391(10126):1186-1196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29551338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e20107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21611151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2011 Jul 4;208(7):1367-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2010 Jul;62(7):2117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20309867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2003 Dec;31(Pt 6):1095-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14641005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2018 Jun;15(6):618-629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28287112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunotherapy. 2019 Jun;11(9):813-829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31120393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2008 Aug;67(8):1090-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18037627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Ther. 2011 Jun;33(6):679-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21704234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Rheumatol. 2002 Apr;29(4):707-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2009 Jun 8;206(6):1435-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 6;278(23):20457-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheumatol. 2016 Nov;68(11):2728-2739</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27332042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 Jan 17;343(6168):313-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24310610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2018 Jun 15;27(12):2113-2124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29635516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Dec 16;269(50):31484-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7989314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2018;14(2):199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28806133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutr J. 2015 Aug 18;14:82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26283629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2015 Dec;72(24):4867-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26118661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2017 Jun;46:112-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28538163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Aug 24;47(4):535-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22795129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2016 Mar 23;8(331):331ra38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27009267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 1995 Nov;38(11):1595-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7488280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metabolism. 1988 Jan;37(1):99-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3336288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheumatol. 2017 Apr;69(4):800-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27863149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2015 Jun;1346(1):33-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25907074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1981 Sep;90(3):665-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6169733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2015 Jun 15;194(12):5713-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25980011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2016 Jun 27;7:184</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27445820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2015 Sep 8;6(26):21771-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26317232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2008 Jul;4(5):612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18362516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2016 Nov 29;9(456):ra115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 1994 Feb;37(2):289-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8129783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nephrol Dial Transplant. 2011 Feb;26(2):498-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2011 Aug;38(6):4225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21116853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2017 Sep;18(9):1025-1034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28737753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Feb 15;339(6121):786-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23258413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Mar 15;186(6):3299-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Rheumatol. 2016 May;12(5):269-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26935283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26261340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Apr 25;13(4):e0196368</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29694426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2020 Feb;130:110805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31812582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eurasian J Med. 2018 Jun;50(2):116-121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30002579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2019 Sep;573(7774):434-438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31511694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jan 17;9(1):251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29343683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2013 Oct;149(1):119-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23962407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheumatol. 2018 Mar;70(3):427-438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29161463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Jun 14;6:27698</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27297692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Res Ther. 2008;10(5):118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18828888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2009 Dec;297(6):E1313-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19738034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2002 Jan;46(1):175-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11817589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jan 17;152(1-2):290-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23332761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2016 Sep 20;45(3):540-554</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27637146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jun 17;10(6):e0127558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26083398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Res Ther. 2014 Jul 10;16(4):R147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25011540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JCI Insight. 2020 Jan 16;5(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31805010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med. 2010 Nov 29;8:77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21114845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1956 Aug 10;124(3215):267-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13351638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2017 Aug;76(8):1327-1339</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27941129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2014 Oct;73(10):1888-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23897774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheumatol. 2014 Apr;66(4):775-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24757129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Control Release. 2013 Nov 10;171(3):269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23892265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Res Ther. 2015 Feb 11;17:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25890351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lupus. 2016 Jun;25(7):766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26946293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2019 Mar;20(3):313-325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30718913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 5;324(5932):1334-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19498172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2009 May;174(5):1575-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19349365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 16;276(7):4588-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Rep. 2016 Jan;4(1):68-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26870337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metabolomics. 2015;11(5):1157-1174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26366134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2010 Jul 15;185(2):1037-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20554958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 1975 Jan-Feb;18(1):15-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1090297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 1994 Mar;37(3):316-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8129787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Rheumatol. 2013 Apr;19(3):134-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23519178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Rheumatol. 2016 Mar;12(3):169-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26698023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2014 Feb;124(2):712-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24463447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Sci. 2009 Apr;109(4):496-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19372632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2019 Dec 3;30(6):1055-1074.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31708446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2003 Jan;162(1):203-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12507903</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Piranavan, Paramarjan" sort="Piranavan, Paramarjan" uniqKey="Piranavan P" first="Paramarjan" last="Piranavan">Paramarjan Piranavan</name>
</region>
<name sortKey="Bhamra, Manjeet" sort="Bhamra, Manjeet" uniqKey="Bhamra M" first="Manjeet" last="Bhamra">Manjeet Bhamra</name>
<name sortKey="Perl, Andras" sort="Perl, Andras" uniqKey="Perl A" first="Andras" last="Perl">Andras Perl</name>
<name sortKey="Perl, Andras" sort="Perl, Andras" uniqKey="Perl A" first="Andras" last="Perl">Andras Perl</name>
<name sortKey="Perl, Andras" sort="Perl, Andras" uniqKey="Perl A" first="Andras" last="Perl">Andras Perl</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000088 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000088 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32341806
   |texte=   Metabolic Targets for Treatment of Autoimmune Diseases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32341806" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020